

Dispersants – An overview on their purpose, value, and application

Tony Moy, September 11, 2018

Agenda

- What are dispersants?
- Why use dispersants?
- How do dispersants work?
- Dispersant types, associated pigment applications, and considerations
- Optimizing dispersant concentration/level in a formulation
- Process considerations
- Examples of dispersant applications
- Questions?

What are **Dispersants**

What are Dispersants?

- Dispersants are chemical substances that serve to stabilize solids/particles (pigments) in a liquid dispersion/suspension
- In the coatings industry these are in the form of: surface actives (surfactants) and polymers

particle size

Making a Dispersion

Why use Dispersants?

Value of Dispersants

- Minimize interaction of pigments
 - Reduce viscosity
 - Enhance stability of pigment and dispersion
 - Reduced settling and kick out
 - Maximize performance contribution of pigments (color, protection, etc.)
 - Minimize the amount of pigment required to do the job (\$\$\$)
- More formulation latitude: ability to load more (solids) into formulation
 - Introduce filler/extender pigments
 - Use less resin to achieve mechanical properties
 - Use less primary pigment (\$\$\$)
- Productivity (\$\$\$)
 - Shorter dispersion time
 - Transfer product with less energy and time

How do Dispersants work?

Dispersant Mechanisms

- Electrostatic
 - Dispersant attaches to pigment and establishes electric double layer causing repulsive forces

Steric

Dispersant attaches to pigment and has segments which stand out from pigment surface to provide mechanical repulsive forces

- Electrosteric
 - A combination of both
- Ultimately the force of repulsion created by dispersant must overcome the attractive forces of the pigment particles to realize a stable state

Types of Dispersants

Types of Dispersants

Low Molecular Weight

- Surfactant Types
 - Ionic and Non-ionic

MW < 1000

Examples:

- Sulfates/sulfonates
- Phosphate esters
- Fatty acids
- Quaternary ammonium/Imidazolium salts

Oligomeric Medium Molecular Weight

- Fatty Acid Modified Ester
 - Anionic
 MW: 1000 3000

High Molecular Weight

- Polyacrylic Acid
- Polycarboxylic Copolymers
- Polyacrylates
 MW > 5000
- Polyurethanes

Types of Dispersants

Star Shaped Polymer

Advanced High Molecular Weight

- Star Shaped Polymers
- Block Copolymers via Controlled Free Radical Polymerization (CFRP)

Selecting a Dispersant

Selecting a Dispersant

Key Questions to consider when selecting/using dispersants

- 1. What is being dispersed?
 - 2. What is it dispersed in?
 - 3. How is it dispersed?
 - 4. What is the objective?

Dispersant(s) to trial

Consideration No. 1: What is being dispersed?

Pigments

- Inorganic, Organic, or both together?
- > Type, Grade, Color Index
- Surface Treated?!

Clay

- Ceramics, e.g. via "slip casting"
- Calcium Carbonate
 - Recovery from waste water
- Catalysts
 - For further processing as slurry

Consideration No. 2: What is it dispersed in?

- Water
 - > What is the pH? Is it neutralized?
- Solvent (blend)
 - > What is the polarity?
- 100% System
 - ➢ What's the Chemistry (EP, PU, …)?

The dispersant must be compatible with the medium in which it is dispersed!

Consideration No. 3: How is it dispersed?

Paddle Blade (Low Shear)

Vertical Sand Mill

Cowles Blade

Roller Mill

Horizontal Mill

Basket Mill

Typically, the type of pigment will dictate what is required

Consideration No. 4: What is the objective?

Process Aid

- Improved pigment wetting
- Increased mill efficiency
- Viscosity control

Performance

- Increased color strength
- Improved compatibility
- Higher gloss
- Stability

Formulation Effect

- Higher pigment loading
- Improved color stability
- Improved rheology control
- Improved economics

Typically, coatings must be a balance of several objectives; Dispersant types and level of usage must be chosen accordingly!

Selecting a Dispersant: General Guidelines – Pigments & Benefits

Ionic Dispersants:

- Fillers, extenders, TiO_2
- Economic solutions
- Combined with resin

LMW dispersants:

- \succ Fillers, extenders, TiO₂
- Economic solutions with less demand for performance
- Combined with resin or HMWD
- Solvent and water borne
- 19 10-Sept-2018

Medium MW dispersants

and smart blends:

- Broadest compatibility
- Universal application

For organic and inorganic pigments

- BASE

We create chemistry

- Lowest viscosities
- Highest color strength
- Highest gloss

Dispersants – Pigments – Applications Water-based

Dispersants – Pigments – Applications Solvent-based

Dispersant Application Recommendations by Market/Industry

Application Markets	Recommended Products for Given Application Types	
Architectural / Deco	Interior decorative coatings (WB) - High MW Polyacrylic Acids Exterior decorative coatings (WB) - High MW Copolyacrylates	 Trim paints (SB) Fatty Acid Modified Trim paints (WB) Adv High MW Polyacrylates Adv High MW Block Copolymer
Industrial Coatings	 Can & Coil Coatings (SB) High MW Polyacrylates Adv High MW Polyacrylates Furniture & Flooring Coatings (WB/SB) Fatty Acid Modified Adv High MW Polyacrylates Adv High MW Block Copolymer 	 Industrial Maintenance (WB/SB) High MW Polyacrylates High MW Polyurethanes Adv High MW Polyacrylates Adv High MW Block Copolymer Marine Coatings (SB) Fatty Acid Modified Adv High MW Polyacrylates Adv High MW Block Copolymer Industrial Mixing Systems Adv High MW Polyacrylates Adv High MW Polyacrylates Adv High MW Block Copolymer
Automotive OEM	 To achieve best jetness and blue undertone with carbon black pigments (WB/SB) Adv High MW Polyacrylates Adv High MW Block Copolymer 	
Printing & Packaging	 WB pigment concentrates and inks High MW Polyacrylates High MW Polyurethanes Adv High MW Polyacrylates Adv High MW Block Copolymer Wetting Agents 	 SB ink formulations Adv High MW Polyacrylates Adv High MW Block Copolymer Grind Resins UV curable inks (SF) Adv High MW Polyacrylates Adv High MW Block Copolymer

BASF Dispersant – Pigment Reference Some suggestions/starting points

Pigment Type	Water	Solvent	Solvent-free
White	Dispex AA 4144 Dispex CX 4230/4320 Dispex Ultra PX 4585	Efka FA 4608/4609/4620 Efka PU 4010/4047 Efka PX 4330	Efka FA 4608/4620
Inorganic Fillers	Dispex Ultra FA 4420/4431/4483 Dispex AA 4135/4140/4144	Efka FA 4609/4620/4642	Efka FA 4620/4642 Efka PU 4046
Aluminum, Pearls (Mica)	Efka FA 4620 Dispex Ultra FA 4437	Efka FA 4609/4620 Efka PU 4047	Efka FA 4620/4665 Efka PU 4046
Black (Organic)	Dispex Ultra PX 4585	Efka PX 4310/4320	
Blue (Phthalo)	Dispex Ultra PX 4585	Efka PX 4350/4751+Efka MI 6745	Efka PX 4731 / 4732 / 4733 / 4751+Efka MI 6745
Violet (Quinacridone)	Dispex Ultra PX 4585	Efka PX 4310	
Red (DPP)	Dispex Ultra PX 4585	Efka PX 4310	
Red (Quinacridone)	Dispex Ultra PX 4585	Efka PX 4310	
Green (Phthalo)	Dispex Ultra PX 4585	Efka PX 4350/4751+Efka MI 6745	
Yellow (Isoindoline) (Benzimidazalone) (Bizmuth Vanadate)	Dispex Ultra PX 4550 (B, BV) / 4585 (I, B)	Efka PA 4401 (I, B) Efka PX 4330 (I, B, BV)	Efka PX 47** series (I,B)
Trans Iron Oxide (Red, Yellow)	Dispex Ultra PX 4550/4575	Efka FA 4608/4609/4620 Efka PA 4401 Efka PX 4330	Efka 4608/4620

Pigment Grinding Reference

Pigment Type	Grind	Grind Equipment
White	Easy	HSD or Sandmill
Inorganic Fillers	Easy	HSD
Aluminum, Pearls (Mica) – Effect Pigments	Don't grind	Paddle mixer
Black (Organic)	Difficult	HSD Premix + High Energy Mill
Blue (Phthalo)	Difficult	HSD Premix + High Energy Mill
Violet (Quinacridone)	Difficult	HSD Premix + High Energy Mill
Red (DPP)	Difficult	HSD Premix + High Energy Mill
Red (Quinacridone)	Moderate to Difficult	HSD Premix + High Energy Mill
Green (Phthalo)	Difficult	
Yellow (Isoindoline) (Benzimidazalone) (Bizmuth Vanadate)	Moderate	Sandmill
Trans Iron Oxide (Red, Yellow)	Moderate to Difficult	HSD Premix + High Energy Mill

Optimizing Dispersant Level in a Formulation

Some Best Practices after a dispersant has been selected

- Avoid mixing pigment types in a single dispersion if possible
- Use of a single, universal dispersant for pigments can be advantageous if compatibility is important
 - Note that these types of dispersants may not give best dispersing results for all pigments; compromise for compatibility
- Confirm compatibility of dispersant with key liquid ingredients in formulation
- If replacing an existing dispersant with a new one, account for substitution based on <u>active solids</u>
- Run a Dispersant Demand Ladder Experiment to determine optimal concentration
- Once an optimal dispersant level is chosen, run grind experiments
- Correlate property development vs grind time to determine optimal grind time
- Perform 2 week accelerated aging study (120 °F) to confirm dispersion stability
 - Test properties before and after aging
- If other pigmented dispersions will be mixed then check for compatibility
 - Flood, float, color acceptance
 - > May need a fatty acid (compatibilizer/emulsifier) or controlled flocculation type of dispersant

Dispersant Demand Curves

- For a given formulation with: Fixed pigment, resin, solvent/water concentrations
- Run ladder experiment varying dispersant concentration
 - Low to High
 - Refer to supplier TDS for recommended range or
 - > Use rough rule of thumb for center point:
 - Active dispersant amt = Pigment Surface area/4 on pigment (%)
 - Measure key property of interest
 - Plot measured Property vs Dispersant Concentration
 - Identify Dispersant Concentration which matches most positive Property value
 - May need to balance a variety of Properties

particle size

Dispersant Demand Curve – Viscosity Example

For a given formulation with:

Fixed pigment, resin, solvent/water concentrations

- Run ladder experiment varying dispersant concentration
 - Low to High
 - Refer to supplier TDS for recommended range or
 - Use rough rule of thumb for center point:
 Active dispersant amt = Pigment Surface area/4 on pigment (%)
 - Measure low shear viscosity

(e.g., Brookfield at fixed RPM)

- Plot measured viscosity vs Dispersant Concentration
- Low point on curve corresponds to optimal dispersant concentration for viscosity suppression

BASF We create chemistry

Processing Considerations

Processing considerations

- 1. Determine grind/processing requirements based on pigment type
 - For easy to grind pigments a simple high shear mixing operation is sufficient
 - For hard to grind pigments a premix followed by milling is required
- 2. Add liquid ingredients first*
- 3. Add solids (pigments) slowly
 - Allow time to fully wet pigment
- 4. *May need to hold back some solvent/water to increase solids/viscosity
 - Increase energy of mixing to help break pigment down to primary size
- 5. Pull samples during grind to track property (color, degree of grind, visc.) as a function of grind time
- 6. Add back liquid hold out as a letdown to create final dispersion

Case Examples of Applications

Case Example: W-210 Microspheres with Efka® FA 4620

Case Example 2: Dispex ® AA 4135

Product	Dispex [®] AA 4135
Performance Highlights	 Offers reduced odor due to sodium hydroxide neutralization
Sustainability Highlights	 Low VOC Low odor Non-APEO Excellent cost performance balance
Applications (Construction Market Focus)	 Recommended for flooring adhesives, sealants, construction adhesives, for ceramic tile adhesives, flexible roof coatings and for primers/bonding aids
Properties	Solids(%): 35VOC content (%): <0.1

Dispersant effect on different grades of CaCO₃ Filler

Amount of pigment disperser in wt-% (solid/solid)

- Dispex[®] 4135 provides a strong viscosity reduction
- Optimal dispersant levels depend on the filler grade

Case Example 3a: Color Acceptance with Dispex Ultra FA 4420

Decrease in color strength after high shear incorporation of colorant

No change in color strength after high shear incorporation of colorant

Case Example 3b: Color Acceptance with Dispex Ultra FA 4420

Commercial colorant 1 Mixed in same base paint

Commercial colorant 2 Mixed in same base paint

In the example the compatibilizing effect is achieved by addition of the Dispex Ultra FA 4420.

This effectively "tunes" the polarity of the base paint and improves compatibility towards the tested colorants

Dispex Ultra FA 4420 (Efka 6220) added to a base paint can significantly improve the performance of the colorants in the paint.

Case 4a: Surfactants as Co-Dispersants for High PVC Arch Coating

High PVC Coating

- Evaluated surfactants as co-dispersants.
 - Hydropalat WE 3320 was most efficient of items tested.
- Increased dosing of Dispex AA 4144 did not show any further benefit.

Case 4b: Surfactants as Co-Dispersants for High PVC Arch Coating

- Differences exist in low shear region of viscosity curve.
- Hydropalat WE 3320 most effective keeping viscosity low.

Addressing settling

Pigment Physical Phenomena and Thermodynamics

Viscosity

- Pigment surface interactions cause resistance to flow
- > Dispersants minimize pigment interactions \rightarrow results in lower viscosity
- Pros: Obtain desired film properties from pigment and lower handling viscosity for productivity and increased formulation latitude

We create chemistry

Pigment Physical Phenomena and Thermodynamics

Settling

- Function of a variety of aspects: gravity, density of pigment and fluid, fluid viscosity, and pigment size (Stoke's Equation)
- > Dispersants minimize pigment interactions \rightarrow hence smaller effective particle size
- > In low viscosity regimes, the effect of dispersants may not be enough to mitigate settling

Stoke's Equation for Settling

$$v = \frac{2}{9} \frac{(\rho_p - \rho_f)}{\mu} g R^2$$

v – settling viscosity $\rho_{\rm p}$ – particle density $\rho_{\rm f}$ – fluid density μ – fluid (dynamic) viscosity g – gravitational constant R – particle radius

Undispersed

Dispersed (smaller effective diameter)

 F_D – Drag force, function of particle diameter, viscosity, density differences

 F_g – Gravitational force, function of particle diameter, viscosity, density differences

Use of Rheology Modifier to address settling

Dispex Ultra FA 4416 with 0.7% Rheovis AS 1188

Higher Pigment Loading to address settling

High Pigment Loading – Efka PX 4585

47.4% DOP 15% Pigment 47.5% DOP 30% Pigment

44 10-Sept-2018

High Pigment/Dispersant Loading – Dispex Ultra FA 4480

Questions?

BASF Solution Finder Tool for Formulation Additives

Check out our Solution Finder Tool on www.basf.com/formulation-additives

- This tool provides you the best additive solution for your challenging formulation task :
 - From dispersing agents, wetting agents and surface modifiers, to defoamers, rheology modifiers and film-forming agents
- Explore the BASF formulation additives portfolio for the paints and coatings industry, by :
 - Receiving recommendations for your formulation challenges
 - Understanding the main benefits of our products by application and get technical information
 - Ordering samples or contacting us for more detailed consultations

Contact Information

Tony Moy

BASF Formulation Additives Technical Specialist Industrial Coatings, Dispersing Agents 11501 Steele Creek Road Charlotte, NC 28273 Email: anthony.moy@basf.com Office: (704) 587-1857 Cell: (610) 764-4309 or (704) 724-7417

BASE We create chemistry